Caffeine Inhibits Acetylcholinesterase, But Not Butyrylcholinesterase

نویسندگان

  • Miroslav Pohanka
  • Petr Dobes
چکیده

Caffeine is an alkaloid with a stimulant effect in the body. It can interfere in transmissions based on acetylcholine, epinephrine, norepinephrine, serotonin, dopamine and glutamate. Clinical studies indicate that it can be involved in the slowing of Alzheimer disease pathology and some other effects. The effects are not well understood. In the present work, we focused on the question whether caffeine can inhibit acetylcholinesterase (AChE) and/or, butyrylcholinesterase (BChE), the two enzymes participating in cholinergic neurotransmission. A standard Ellman test with human AChE and BChE was done for altering concentrations of caffeine. The test was supported by an in silico examination as well. Donepezil and tacrine were used as standards. In compliance with Dixon's plot, caffeine was proved to be a non-competitive inhibitor of AChE and BChE. However, inhibition of BChE was quite weak, as the inhibition constant, Ki, was 13.9 ± 7.4 mol/L. Inhibition of AChE was more relevant, as Ki was found to be 175 ± 9 µmol/L. The predicted free energy of binding was -6.7 kcal/mol. The proposed binding orientation of caffeine can interact with Trp86, and it can be stabilize by Tyr337 in comparison to the smaller Ala328 in the case of human BChE; thus, it can explain the lower binding affinity of caffeine for BChE with reference to AChE. The biological relevance of the findings is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systemic administration of the potential countermeasure huperzine reversibly inhibits central and peripheral acetylcholinesterase activity without adverse cognitive-behavioral effects.

Huperzine A is potentially superior to pyridostigmine bromide as a pretreatment for nerve agent intoxication because it inhibits acetylcholinesterase both peripherally and centrally, unlike pyridostigmine, which acts only peripherally. Using rhesus monkeys, we evaluated the time course of acetylcholinesterase and butyrylcholinesterase inhibition following four different doses of -(-)huperzine A...

متن کامل

Role of oligosaccharides in the pharmacokinetics of tissue-derived and genetically engineered cholinesterases.

To understand the role of glycosylation in the circulation of cholinesterases, we compared the mean residence time of five tissue-derived and two recombinant cholinesterases (injected intravenously in mice) with their oligosaccharide profiles. Monosaccharide composition analysis revealed differences in the total carbohydrate, galactose, and sialic acid contents. The molar ratio of sialic acid t...

متن کامل

Inactivation studies of acetylcholinesterase with phenylmethylsulfonyl fluoride.

Acetylcholinesterase (AChE), a serine hydrolase, is potentially susceptible to inactivation by phenylmethylsulfonyl fluoride (PMSF) and benzenesulfonyl fluoride (BSF). Although BSF inhibits both mouse and Torpedo californica AChE, PMSF does not react measurably with the T. californica enzyme. To understand the residue changes responsible for the change in reactivity, we studied the inactivation...

متن کامل

Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta.

Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer's disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention--compounds 42 and 13. The former is a sacchari...

متن کامل

Natural inhibitors of cholinesterases: implications for adverse drug reactions.

PURPOSE Acetylcholinesterase and butyrylcholinesterase are two closely related enzymes important in the metabolism of acetylcholine and anaesthetic drugs, including succinylcholine, mivacurium, and cocaine. The solanaceous glycoalkaloids (SGAs) are naturally occurring steroids in potatoes and related plants that inhibit both acetylcholinesterase and butyrylcholinesterase. There are many clinica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013